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Abstract. Modeling realistic branches and ramifications of trees is a challenging task because of
their complex geometric structures. Many approaches have been proposed to generate plausible tree
models from images, sketches, point clouds, and botanical rules. However, most approaches focus on
a global impression of trees, such as the topological structure of branches and arrangement of leaves,
without taking continuity of branch ramifications into consideration. To model a complete tree
quadrilateral mesh (quad-mesh) with smooth ramifications, we propose an optimization method to
calculate a suitable control mesh for Catmull–Clark subdivision. Given a tree’s skeleton information,
we build a local coordinate system for each joint node, and orient each node appropriately based on
the angle between a parent branch and its child branch. Then, we create the corresponding basic
ramification units using a cuboid-like quad-mesh, which is mapped back to the world coordinate.
To obtain a suitable manifold initial control mesh as a main mesh, the ramifications are classified
into main and additional ramifications, and a bottom-up optimization approach is applied to adjust
the positions of the main ramification units when they connect their neibour. Next, the first round
of Catmull–Clark subdivision is applied to the main ramifications. The additional ramifications,
which were selected to alleviate visual distortion in the preceding step, are added back to the
main mesh using a cut-paste operation. Finally, the second round of Catmull–Clark subdivision is
used to generate the final quad-mesh of the entire tree. The results demonstrated that our method
generated a realistic tree quad-mesh effectively from different tree skeletons.

Keywords: Tree quad-mesh, Construction optimization, Catmull–Clark subdivision, Manifold
tree modeling

1 Introduction

Fig. 1. (d) Prevailing apple tree modeling using our approach. (c) Generalized cylinders represent tree geometries
with (b) their skeletons interpolated by Hermite splines. In comparison with a real tree, (a) the generated tree
model is a manifold quad-mesh that takes the continuity of branch ramifications into consideration, inherently
compensating for the disadvantages of generalized cylinder modeling.

In computer graphics, tree modeling and animation have wide applications in the fields of film pro-
duction, video games, and virtual reality because plants increase the realism of virtual scenery. In the
past three decades, many approaches have been presented to achieve the realistic modeling and animation
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of trees. Tree modeling methods can be categorized into rule-based methods [15,25,27,28], sketch-based
methods [21], image-based method [12, 30], and modeling methods from point clouds [11, 16]. However,
most of these studies concentrated on modeling the global morphology of trees, including the complex
branch structures and botanical arrangement of leaves. A typical simplified structure to represent tree
branches is a generalized cylinder. Many studies in the animation of tree growth [23] and swaying in
wind fields [9, 10,15,24] also use the same simplified structure to represent bending branch joints.

Although generalized cylinders are efficient and superior in terms of realism in tree modeling, the
discontinuity between branches for generalized cylinder representation is obvious, as shown in the close-
up in Fig. 1(c). This discontinuity of branches is easy to solve if implicit surface representation is adopted,
but this is difficult to control interactively.

The motivation of our work is to create a complete manifold quadrilateral mesh (quad-mesh) ef-
fectively, as shown in Fig. 1(d), from user-defined skeletons of a tree (Fig. 1(b)) using Catmull–Clark
subdivision for continuous ramification construction, thereby overcoming the drawbacks of both gener-
alized cylinders and implicit surfaces. This study makes two main contributions:

– We propose a method to generate a tree model effectively with smooth ramifications that combines
subdivision surface construction with parametric surface construction.

– We propose an optimization algorithm for a tree’s control mesh construction using user-defined
skeletons.

2 Related Work

2.1 Tree modeling

The earliest developed plant models were procedural models, which generate content using a procedure
that has the function of database amplification and can be used to model, for example, plants, build-
ings, urban environment, and texture. In the case of plant modeling, they have been applied to simulate
botanical organs, the growing process, and various plant structures. self-organizing parameter character-
istics became the basis of the L-system [26] and self-organizing tree modeling methods [22, 32], and we
use those characteristics in our approach. Although plausible models have been obtained for the above
methods, the final shape of the plant is not easy to control, and many parameters are complex for users
to adjust.

A broad trend in computer graphics is data-driven synthesis, where models are created based on real-
world measurements, such as those in images or laser scans of geometry. Tan et al. [30] proposed a method
of combining input images with user interaction in the construction of trees. Hu et al. [12] modeled trees
based on two images from different views with polar constraints for animation using a physical model.
Livny et al. [17] reconstructed multiple overlapping trees from point clouds simultaneously without
pre-segmentation by applying a series of global optimization-based biologically derived heuristics. Such
methods can be extremely effective; however, they are often intended for geometric reconstruction. Hence,
maintaining the continuity of ramifications is beyond their scope.

Implicit surface tree modeling is other popular method, which began with an idea presented by
Bloomenthal [3]. Compared with parametric surfaces, implicit surfaces are difficult to control and time-
consuming, but owing well continuity, noise-resistant, performing Boolean operation easily. There are
many types of implicit surfaces, including the convolution surface, which is defined as an iso-surface in
a scalar field that convolves a geometric skeleton using a kernel function [4]. An interesting application
of the convolution surface is modeling sketch-based models [1, 29, 38], which takes advantage of the
rotundity and smoothness of convolution surfaces, which is suitable for tree branches. Another type of
typical implicit surface is the Poisson surface [14], which concludes surface reconstruction using Poisson’s
equation.

There has also been some effort to model smooth joint structures on both parametric surfaces and
implicit surfaces for trees (not for botanical trees only). [31] combined generalized subdivision with mesh-
based parameterized L-systems to generate smooth ramification structures. [7] generated topologically
correct surfaces of branching tubular structures for a vessel tree using the maximal-disc interpolation
method. [8] built implicit surfaces as hierarchical BlobTrees [35] and combined surface components in
both smooth and non-smooth configurations. [2] proposed an interactive method to refine the joint shape
using a user-defined sketch.
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Zhu et al. [36] proposed a method of modeling high-quality quad-only tree shapes efficiently based
on local convolution surface approximation, which offer credible for our idea of modeling manifold trees
with smooth ramifications. However, they focused on remeshing a given triangle mesh of a tree into a
quad-mesh. Another solution for continuous vascular structure reconstruction was proposed by [34]. The
resulting meshes were not manifold because of the bifurcation tiling scheme in their method, whereas
our meshes are manifold because we adopt the cut-paste process.

Although the works of [7] and [34] are similar to our work, the ramifications of botanical trees we
attempt to reconstruct possess their own features.

2.2 Subdivision

In this section, we show why the Catmull–Clark scheme [5] appears to be a better choice for our ap-
plication than other schemes by comparing results on a cuboid-like mesh. The resulting surfaces of the

(a) Catmull–Clark (b) Loop (c) Butterfly (d) Doo–Sabin

Fig. 2. Results of applying various subdivision schemes to a cube. Because Loop and Butterfly are triangular
schemes, the cube was triangulated first before the subdivision scheme was applied.

Loop [18], Catmull–Clark, Butterfly [20], and Doo–Sabin [6] schemes obtained by subdividing a cube are
shown in Fig. 2. The figure shows that the Butterfly scheme increased irregularly based on the original
mesh, and it was difficult for it to satisfy the visual requirements. The Loop and Doo–Sabin schemes
maintained the original shape to some degree, which was subtly affected at the edges of the cube. The
result of the Catmull–Clark scheme is the closest to a sphere, with little influence on the weights of
the edges from the initial mesh. The surface of tree branches can be easily approximated based on a
cuboid-like initial mesh for Catmull–Clark subdivision. Thus, we adopt a classical Catmull–Clark scheme
for tree ramification representation.

Catmull–Clark scheme subdivision is based on the tensor product bicubic spline and generates surfaces
that are C2 everywhere except at extraordinary vertices, where they are C1.

It is not difficult to conclude that any arbitrary polygonal mesh can be reduced to a quad-mesh once
the first Catmull–Clark subdivision is executed. Furthermore, the number of extraordinary vertices is
determined simultaneously and tends to be unchanged after one or more Catmull–Clark subdivisions.
The remaining problem is how to generate an initial mesh to connect these branches appropriately with
little visual distortion, which is introduced in the following section.

3 Overview

The final aim of our work is to create a manifold tree quad-mesh with tolerable visual distortion and
smooth ramifications, which is described by the following objective function:

f(Rems) =

N∑
i=1

RU(Remsi) +
∑

RC(Remi,j) +
∑

CP (Remi,k), (1)

where Rems denotes the set of all ramifications in a tree extracted from the skeleton information of
branches, and is regarded as an independent variable in the objective function. Sub-objective function
RU is the distortion function of the ramification unit for Catmull–Clark subdivision. Remsi is the i -th
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ramification in the set Rems. Sub-objective function RC is the distortion function of the ramification
connection between two neighbor ramifications. Remi,j is the connection between the i -th ramification
and j -th ramification. Sub-objective function CP (cut-paste) is the fitness function of the pasted ram-
ification between two overlapping ramifications. Remi,k is the i -th ramification merged with the k -th
ramification.

(a) (b) (c) (d) (e)

Fig. 3. Overview of our tree modeling approach. (a) Users define the skeleton information of branches. Extract
the close-up of one ramification skeleton and create a basic ramification unit. (b) Propagate ramifications for
a single ramification unit. (c) Connect ramification units using an optimization algorithm and distinguish the
additional ramifications from the main mesh simultaneously. (d) First, subdivide the main mesh to which the
additional ramifications are pasted back. (e) Obtain the final mesh with one more subdivision.

Hence, we convert the problem into creating a tree model with minimum f(Rems). Fig. 3 shows the
workflow of our tree modeling system, which consists of three parts.

First, skeletons of a tree are defined by the user. Then, basic ramification units, which can represent
continuous ramification structures after Catmull–Clark subdivision, are created with an RU value equal
to zero as the initial state using the skeleton information of branches in the local coordinate system,
thereby setting their parent node as the origin. The ramification units are mapped back to the world
coordinate system. This part of the procedure is described in Section 4.

Once all ramifications are arranged, they can be easily sorted according to the order of their parent
nodes and checked to determine whether they are connectable ramifications or additional ramifications.
A bottom-up optimization algorithm is applied recursively to adjust all connections among connectable
ramifications, thereby striking a balance between the RU and RC functions in addition to making the
ramification propagate. We obtain the main mesh of the tree at the end of this step. The details of this
part of the procedure are described in Section 5.

If there exist any additional ramifications, then this means that some child branches that could
destroy the manifold of the tree mesh have been detected. They should be cut and pasted into the main
mesh after its first Catmull–Clark subdivision. The CP function indicates the distortion in this operation
as discussed in Section 6.

4 Basic Branch Unit Creation

Fig. 4 shows two typical basic ramification units: the connection unit shown in Fig. 4(a) is for those
segments of branches that do not have any child branches, whereas the ramification unit in Fig. 4(b) is
for a child branch that has start direction (cv1 − cv0) located in the i-th node bvi of its parent branch,
counted from the root node.

For the connection unit between bvi and bvi+1, DSi is the unit start direction that is the same as
(bvi+1 − bvi), and DEi is the unit end direction. Additionally, Sj(j=0,1,2,3) denotes the vertices of the
start boundary and Ej denotes the vertices of the end boundary. They are created by basis {B,N ,DSi}.
Both the start and end boundaries of ramifications are sorted clockwise when these ramifications are
created.

The ramification unit is an expansion of the connection unit, in addition to a sub-branch. Q is the
intersection of main face ABCD and the child branch skeleton. Subface abcd is also called a sub-branch
start boundary, which is recorded for boundary calculation using Catmull–Clark subdivision as explained
in Section 6. At this step, Q is also the center of main face A0A1A2A3, and Q′, which superposes Q,
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is the center of subface a0a1a2a3. The sum of cosine distances between the pairs of vectors is selected
as the RU function, that is,

RU(Remsi) =

3∑
k=0

CosDistance(QAk,Q
′ak) =

3∑
k=0

QAk ·Q′ak

‖QAk‖ · ‖Q′ak‖
. (2)

bvi

bvi+1

DSi

N

B

DEi=DSi+1

S0

S1

S2

S3

E0

E1
E2

E3

(a) Connection unit

𝒃𝒗𝑖+1
𝒃𝒗𝑖 (𝒄𝒗0 )

𝒄𝒗1

Q(Q’)

(E0)
A3

A0 (S0)
A1 (S1 )

A2 
(E1)a3

a0 a1

a2

𝒃𝒗𝑖−1

E2

E3

S2S3

(b) Ramification unit

Fig. 4. Two typical basic branch units created according the skeleton

4.1 Criteria

A suitable basic ramification unit plays a large role in ramification representation. Taking the properties
of Catmull–Clark subdivision into consideration, the following criteria should be satisfied naturally for
high-quality tree quad-mesh construction.

1. A ramification unit is created corresponding to a subbranch.

2. Each RU value of the ramification unit when it is built is zero (the minimum value) initially because
this value will be increased in the subsequent connection optimization step, so a zero value simplifies the
calculation.

3. The diameter of a branch should be multiplied by correction factor α to counteract the shrinkage
caused by Catmull–Clark subdivision (particularly the first two subdivisions).

4.2 Ramification Unit in the Local Coordinate System

Let {X,Y ,Z} denote the basis of the world coordinate system in R3, in which the skeletons of all
branches from a tree are user-defined. Local coordinate systems with basis {x,y, z} can be built for
each child branch, and their mapping to the world coordinate system is decomposed into one 1 × 3
translation vector T 0, and two 3 × 3 rotation matrices Rot1 and Rot2. Given a vector in the world
coordinate system, P , and a vector in a local coordinate system, p, we have the following surjective
mapping equations:

p = Rot2 ·Rot1 · (P − T 0) (3)

P = Rot1T ·Rot2T · p + T 0, (4)

where T 0 is bvi in Fig. 4; Rot1 is the rotation matrix calculated by the Rodrigues rotation formula to
make the parent branch direction (bvi+1−bvi) aligned to the y axis, whereas Rot2 makes y×(cv1−cv0)
aligned to x. Then ramification unit Remi, such as that in Fig. 4(b), contains set of vertices Vlocal, and
set of faces F is built in this local coordinate system. Then, according to Eq. 4, Remi in the world
coordinate system can be obtained easily by translating Vlocal to V , which is a corresponding set of
vertices in the world coordinate system. With the help of the local coordinate system, it becomes trivial
to check whether the neighbor ramifications are connectable by converting them into the same local
coordinate system and projecting them into the same plane.
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5 Ramification Unit Connection Optimization and Propagation

After all ramifications are built and classified, we link all connectable ramifications first using a connec-
tion optimization algorithm to alleviate distinct distortion among ramifications. Thus, we should first
distinguish connectable ramifications from additional ramifications.

If a node has more than one child branch, then one child branch is selected to create a ramification as
the “current ramification”, and the other branches are checked to determine whether they are additional
ramifications, as shown in Fig. 5. According to the shape of the ramification unit, there are two cases in
which a child branch can be considered as an additional ramification:

1. The absolute value of the angle between two projected vectors of the child branch in the current
ramification modulo 45◦ is smaller than 10◦ (Fig. 5(a)).

2. Q and Q′, which are the intersection points of two child branches on the current ramification, are
not on the same face (Fig. 5(b)).

θ

(a) |(θ)mod(45◦)| < 10◦

(case 1)

Q’

Q

(b) Q and Q′ are in the
same face (case 2)

(c) Connectable ramification

Fig. 5. Distinguishing the ramification type in the transverse view of the ramification unit cross section (black
square). The black arrow is the projected vector of the child branch in the current ramification. The red arrow is
that in the additional ramification. The blue arrow is that in the connectable ramification, which can be attached
to the current ramification trivially before the subdivision step.

In this section, sub-objective functions RU and RC must be considered simultaneously. Thus, f2,
which is the objective function in this step, is

f2(Rems) =

N∑
i=1

RU(Remsi) +
∑

RC(Remi,j). (5)

To determine the minimum value, we divide this task into two independent parts: a radial neighbor
ramification connection and axial connection calibration with repulsion equilibrium.

The radial neighbor ramification connection attempts to determine corresponding adjacent start and
end boundaries between neighbor ramifications along the directions of skeletons:

Idx = argmin

m−1∑
k=0

CosDistance(CE
(i)
k , CS

(i+1)
(k+Idx)mod(m)), (6)

where CE
(i)
k is the end boundary in Remi and CS

(i+1)
k is the start boundary in Remi+1. When the

ramifications on one branch connect correctly, axial connection calibration is applied to expand the
connection space between neighbor ramifications, which is described asS

(k)
i = argmax(

∑3
i=0

∥∥∥E(k−1)
i − S(k)

i

∥∥∥), s.t.
∥∥∥Q(k) − S(k)

i

∥∥∥ ≥ α ·Diamax

E
(k)
i = argmax(

∑3
i=0

∥∥∥E(k)
i − S(k+1)

i

∥∥∥), s.t.
∥∥∥E(k)

i −Q(k)
∥∥∥ ≥ α ·Diamax

(7)

For a pair of neighbor ramifications, the solution of Eq. 7 can be explained by Fig. 6. ∆xe is the axial
movement of the end boundary in Remi, and based on the law of cosines, the increment of RU is

∆RU = 4 · cos(∠A2QiA
′
2) = 2

‖QiA2‖2 + ‖QiA
′
2‖2 − ‖A2A

′
2‖2

‖QiA2‖ · ‖QiA′2‖
(8)
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A1

A0

A3 A3

A0 A1

Fig. 6. Axial equilibrium between two connectable ramifications

where ∆xe equals ‖A2A
′
2‖. ‖QiA2‖ is the radius of the sphere tangent to edges of the cube with an edge

length of Diai before axial connection calibration. The constant 4 results from the symmetry of the cube.
Simultaneously, the increment of RC is

∆RC =

{
−(1− P

T ) · CosDistance(CE(i)
k , CS

(i+1)
(k+Idx)mod(m)) 0 ≤ P < T

0 P ≥ T
, (9)

where P is the distance between the center of the end boundary in Remi and that of the start boundary
in Remi+1, which can also be regarded as the repulsion between the neighbor ramifications because ∆RC
is only valid for a sufficiently close distance. Threshold T is set to Diai. When ∆RC is negative, this
means that axial movement ∆xe is helpful for reducing the visual distortion of the connection.

The solution retrieval of ∆xs and ∆xe for min(∆RU +∆RC) is conducted iteratively, and the effect
of connection optimization is shown in Fig. 7. The figure shows that connection optimization avoids
the overlap between the neighbor ramifications (Fig. 7 (a)). Moreover, the subdivision surface of the
ramification connection (in the red box) after optimization (Fig. 7(d)) is smoother than that without
optimization (Fig. 7 (c)).

By contrast, for any ∆xe, if min(∆RU + ∆RC) is always larger than given additional ramification
threshold Tadd, then Remi is considered as an additional ramification and should not be connected into
main mesh in this step; it is also the last case to obtain an additional ramification.

(a) Original
mesh

(b) Connection
optimization

(c) Subdivision
for (a)

(d) Subdivision
for (b)

Fig. 7. Effect of connection optimization

After all additional ramifications for the next step have been picked up, we also obtain connectable
ramification set Ramsc. Then, the connection optimization algorithm is applied from bottom to top
in Ramsc recursively for sub-branch propagation, as shown in Fig. 3(b), which can be described by
the propagation Algorithm 1. The main idea of this algorithm is to search all child branches along a
branch’s node list (skeleton) and connect corresponding connectable ramifications successively. When
this algorithm is applied from the root node of a tree, we can obtain the main mesh of the tree, and the
remaining task is a cut-paste operation for additional ramifications.
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Algorithm 1 Sub-branch propagation

Input: Current ramification that needs to grow up CurrentRam,
connectable ramification set Ramsc,
all node lists’ (skeletons’) set Branches;

Output: Grown up ramifications CurrentRam′;
1: Define an empty sub-branch’s ramification queue, qRam;
2: Define array Ram array to record the current branch’s child branch identifier (ID) using its node list with

initial value -1;
3: Define CurrentBranch = Branches[CurrentRam.ChildNodeID];
4: Define current child ID CurrentCid = 0;
5: for i > CurrentBranch.Cid.size do
6: SubBranch = Branches[CurrentBranch.Cid[CurrentCid]];
7: Ram array[SubBranch.sid] = SubBranch.Cid[CurrentCid];
8: i=i+1;
9: end for

10: CurrentCid = 0;
11: while j < CurrentBranch.NodeList.size do
12: if Ram array[CurrentCid] 6= −1 then
13: SubBranch = Branches[CurrentBranch.Cid[CurrentCid]];
14: Define temporary ramification

Ram = Ramsc[SubBranch.RamID];
15: Run this algorithm recursively for Ram and obtain grown up ramification RamG;
16: qRam.push(RamG);
17: end if
18: end while
19: Define temporary ramification Ram′

20: while iRam.size > 0 do
21: Ram′ = iRam.pop()
22: if iRam.size > 0 then
23: Define the next ramification that needs to be connected, Ram2 = iRam.pop()
24: Connect Ram′ with Ram2 according to Eq. 5 and obtain new Ram′ ;
25: Update the end boundary indices of Ram′;
26: else
27: Create a connection unit along the remainder of CurrentBranch.NodeList
28: end if
29: end while
30: return Ram′.

6 Additional Ramification Cut-Paste

As all basic ramifications are constructed first, our modeling method has a local priority. Distortion
accumulates if all basic ramifications are connected, and the two-manifold structure of the tree modeling
surface is distorted by the overlap of ramifications. If a ramification can cause high distortion or overlaps
with other ramifications, then we select it as an additional ramification before the ramification connection
optimization step to avoid it having a bad effect on the entire tree. To merge those additional ramifications
back into the main mesh created in the ramification connection optimization step, cut-paste is performed.

Only when additional ramifications exist can this operation be implemented to merge those additional
ramifications into the main mesh after the first Catmull–Clark subdivision. Each additional ramification
grows up according to Algorithm1, and is cut alone with the sub-branch boundary after the first subdi-
vision. Then, according to the Catmull–Clark subdivision process (Section 2.2), the original sub-branch
boundary is determined by recording the new edge vertices that were generated from vertices that belong
to the original sub-branch boundary. This method stably calculates the current sub-branch boundary
shown in Fig. 8. As the sub-branch boundary is known, we can extract the vertex set and corresponding
face set of the grown sub-branch beginning with any seed vertex in this sub-branch.

Then, a segment-quad-face intersection test based on segment-triangle one [19] is implemented to
determine the intersection face in the main mesh in addition to the closest vertex. To save time, we limit
the intersection test scope to a sphere, with the joint node of the additional ramification as the center
point and 1.5 times its diameter as the radius. The one-ring neighbor of the closest vertex constitute the
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(a) Original
boundary

(b) 1st sub-
division

(c) 2nd sub-
division

(d) 3rd sub-
division

Fig. 8. Boundary calculation after Catmull–Clark subdivision

paste-destination boundary. The sub-branch boundary can match the paste destination boundary using
an equation similar to Eq. 6:

Idx = argmin

m−1∑
k=0

CosDistance(SBk,PB(k+Idx)mod(m)), (10)

where SB and PB are the sub-branch boundary and paste destination boundary, respectively, which
were projected into same plane following their center point alignment. Additionally, m = 8, in this case.

When merging the two boundaries, sub-objective function CP between Remi and Remk is described
as

CP (Remi,k) = β

m−1∑
j=0

CosDistance(SB
(i)
j ,PB

(k)
j ) + (1− β)

m−1∑
j=0

‖SB(i)
j − PB

(k)
j ‖, (11)

where β is a weight factor for the boundary merge, SB(i) is the sub-branch boundary in Remi, and
PB(k) is the paste destination boundary close to Remk, which is regarded as an additional ramification.
As we can see, two factors contribute to cut-paste distortion: the angle deflection between PB and
SB, and the Euclidean distance between them. Thus, we need to rotate and translate PB and SB
to determine the minimum CP . Fig. 9(a) to (d) show the entire cut-paste process as an example. The
additional ramifications’ cut-paste process is described as follows:

1. Calculate the intersection point between the skeleton in an additional ramification and main mesh
after the first Catmull–Clark subdivision.

2. Determine the closest vertex to the intersection point in the main mesh.
3. Delete the face that contains the closest vertex and its one-ring neighbor in the main mesh, and

obtain the entire boundary as a paste destination boundary.
4. Extract a sub-branch from the additional ramification along with its sub-branch boundary.
5. Merge the sub-branch boundary and paste the destination boundary with minimizing Eq. 11 using

the rotation and translation operation.
6. After all additional ramifications are cut and pasted, apply the Catmull–Clark subdivision to obtain

the final modeling of the tree.
Fig. 9(e) shows the generality of our cut-paste process by pasting another additional ramification into

the main mesh with a different position, rotation, and diameter.

7 Results and discussion

In this section, we present the results of our method using a sketching tree modeling interface. To obtain
the 3D skeleton of branches for our method, we drew and adjusted our tree from both the front view
and side view, adopting the same method as that in [12]. The main user interfaces of the tree modeling
system are shown in Fig. 10(a) and (b), which denote two 2D views. We input two pictures of a tree
with its camera parameters and sketched the 2D skeletons along the pictures so that the 3D skeletons of
branches could be calculated.

In our first experiment, as Fig. 10 shows, we attempted to reconstruct a simple binary tree whose
point cloud was obtained using structure from motion as ground truth from photographs that covered
the tree fork 360◦.
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(a) (b) (c) (d) (e)

Fig. 9. Cut-paste process for an additional ramification. (a) Merge the sub-branch at the right-hand side, which
is an additional ramification, with the main mesh. (b) Extract the additional ramification with its sub-branch
boundary after the first Catmull–Clark subdivision. (c) Determine the closest vertex in the main mesh in addition
to its one-ring neighbor as the paste-destination boundary, which is used to delete the overlapping face when
implementing the paste operation. (d) Match the sub-branch boundary of the additional ramification to the
paste-destination boundary and merge the two branches using one more subdivision. (e) Another ramifications’
cut-paste result for an additional branch with a different diameter, rotation, and position.

Compared with the classical generalized cylinder method, the results in Fig. 10(d) and (e) demonstrate
that our approach modeled tree ramifications as a manifold, preserving the shape and features expressed
by generalized cylinders faithfully. The gray parts of the point cloud indicate the difference between the
modeling surface and real surface. Without any special approximate algorithm to fit the point cloud, our
result in Fig. 10(e) had fewer gray parts than that for the generalized cylinders, particularly around the
ramification part, which means that our method was more suitable for describing the tree structure than
generalized cylinders.

This experiment also demonstrated that our result, which was available by drawing simple skeletons,
was a suitable summary and simplification of that created by screened Poisson surface reconstruction [13]
from a dense point cloud. Although the Poisson surface had more details, our result demonstrated a
similar global geometric impression to its result. By contrast, the Poisson surface could not express the
texture of bark well geometrically because it was limited by the density of the point cloud obtained from
pictures. In this case, texture mapping for a bump map may be a better choice to represent tree bark,
and our surface could be smoother and easily parameterized for texture mapping.

(a) Real picture in two
views

(b) Point cloud (c) Generalized
cylinders

(d) Our ap-
proach

(e) Poisson
surface

Fig. 10. Examples of a model for a ramification of a real-tree

Another experiment was conducted to verify whether the cut-paste step was suitable for multi-
furcation ramifications. In this experiment, we set all the ramifications as additional ones manually for
verification. We present the results for ramifications with a furcation number from 4 to 7 (additional
ramification numbers were 3 to 6) in Fig. 11. The two-manifold property for the meshes were maintained
well as the furcations increased, which means that the cut-paste process that we adopted decreased
distortion and avoided overlap for multi-ramifications . Tab. 1 records the face number for the final
mesh, and the time cost for cut-paste and subdivision; the furcation number is in proportion to all of
other items.
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(a) 4-furcations (b) 5-furcations (c) 6-furcations (d) 7-furcations

Fig. 11. Multi-furcation ramification construction

Table 1. Time cost for multi-furcation ramification construction

Furcation number Face number Cut-Paste(ms) Twice Subdivison(ms)

4 1104 82 41
5 1408 121 49
6 1904 179 76
7 2208 259 98

As the results of the experiments have demonstrated, our method was suitable for tree ramification
modeling. Our method was applied in the next experiment to some complete trees. Fig. 12 shows a
variety of results generated from skeletons of different trees. The complexity of the skeletons ranged from
a small number to a large number. All the meshes of trees were manifold, with continuous ramifications,
which increased the realism of the trees. Our method obtained a complete tree model for different types
of trees, and maintained the two-manifold property of their ramifications.

The corresponding time cost of these trees in each step is shown in Tab. 2. The additional ramifications
were recognized automatically according the section 5. The table shows that, in our method, a complete
tree was modeled in a short time. Taking Tab. 1 into consideration, we can found that the average time
consumed in the cut-paste step per additional ramification was far longer than that in Tab. 2. Thus,
this also demonstrated that the most time-consuming step was cut-paste because of the intersection test
between additional ramifications and the main mesh, which is why we limited the search scope in this
step. Further research is necessary to reduce the time of the cut-paste step.

Fig. 12. Variety of results generated from user-defined skeletons (blue lines) of different trees. From left to right:
cherry tree (Tree1), maple tree (Tree2), and manual apple tree (Tree3).

8 Conclusions

We proposed an effective and intuitive tree modeling system to generate manifold quad-meshes with
smooth and continuous ramification structures. The resulting surface was generated using a Catmull–Clark
subdivision scheme directly without any extra virtualization algorithm. To improve the surface quality
of the tree and retain the two-manifold property of the mesh, ramification connection optimization and
additional ramification cut-paste were conducted for our local priority mesh generation algorithm.

The user-defined skeleton information of the branches was intuitive and essential as input, which
decreased the difficulty of interactive control for tree modeling. Our resulting meshes were purely quadri-
lateral with continuous ramifications, which makes them similar to those that adopt generalized cylinders,
and can be a reasonable summary of the Poisson surface in a short time.
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Table 2. Time cost in each step of modeling for different trees

Tree No.
Branches Connection Additional ramifications

Cut-Paste(ms)
1st Subdivison 2nd Subdivison

number Optimization(ms) number (ms) (ms)

Tree1 85 1572 5 4991 361 3601
Tree2 200 2101 4 8486 547 4632
Tree3 42 242 0 0 194 414
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